Age-related Hearing Loss: Ear and Brain Mechanisms

Frisinia RD
Annals of the New York Academy of Sciences
Sensory system aging changes

- Peripheral – Ear
 - Cochlea
 - Efferent system

- Central – Brain
 - Auditory cortex

- Comorbid conditions
 - Metabolic
 - Hormone
Auditory efferent system

Auditory cortex

Superior olivary complex (SOC)

Cochlea
Olivocochlear efferent system
Measuring function of MOC

- Efferent control
- Modulate sensory input
- Contralateral suppression
 - Distortion-product otoacoustic emission (DPOAE)
 - $2F_1 - F_2$
 - Difference of DPOAE measured in
 - Quiet
 - Wideband noise to contralateral ear
Measuring function of MOC
Aging changes in MOC function

- Using contralateral suppression
- Subjects with intact cochlear function

- Contralateral suppression declines with age
- **MOC function declines with age**
Aging changes in MOC function

- CBA mouse strains
 - Good peripheral hearing

- MOC function declines with age
Molecular bases for MOC decline

- $K_v1.1$, $K_v3.3$, $K_v3.1$ channels
 - High-frequency action potential generation
- Immunocytochemical stain
 - Decline for $K_v3.1$ in MOC with age
- $K_v3.1$ knockout mice
 - $+/+$
 - Heterozygotes
 - Knockout

![Graph](image)

- MOC function decline
- Superior Paraolivary Nucleus (SPN) declines
- Ventral Nucleus of the Trapezoid Body (VNTB)
Comorbid conditions and hearing

- Hormonal imbalances
 - Type 2 diabetes mellitus
 - Aldosterone
 - Hormone replacement therapy

- Hearing studies
 - Peripheral
 - Central
Summary and Conclusions

- Many mechanisms for age-related hearing loss
 - Environmental factors
 - Cochlea function decline
 - Hair cells, neurons, stria vascularis
 - Loss of efferent feedback from brain
 - MOC system function decline
 - $K_v 3.1$
Summary and Conclusions

- Age-related hormonal imbalances
- Reversibility of sensory impairments?
- Learn more in neural, genetic, molecular bases of age-related hearing loss
End of presentation

Thank you for your attention