OTOLOGY SEMINAR
Facial Canal Course Anomaly

Introduction

- Anomalies involving the tympanic segment frequently are associated with a dysplasia of the stapes, lack of differentiation, or agenesis of the oval window
- Anomalies also occur in otherwise normal temporal bones

Embryology

- The 1st brachial arch (Meckel’s cartilage) forms the body of the incus and malleus
- The 2nd arch (Reichert’s cartilage) forms the shaft of the incus and malleus, the stapes superstructure and the facial nerve
- The footplate is derived from the 2nd arch and the otic placode
- 3 weeks
 - aggregation of ganglionic cells at the otic vesicle
 - primordium of the acoustic and facial ganglia
- 5 1/2 weeks
 - facial nerve fibers run in a lateral direction from the nucleus under the floor of the 4th ventricle
- 6 1/2 to 7 weeks
 - Chorda tympani nerve appears
- 8 weeks
 - cartilaginous condensation begins to form the stapes
- Auditory ossicles and associated structure
 - About 5 weeks from a mass of undifferentiated mesenchyme to the final stage of the complicated otic capsule (the ossicular chain with all its connections and the facial nerve canal are formed)
- 5th months
 - forms the foramen mastoideum primivitum
- 35 weeks
 - Tympanic portion of the facial canal is completed
- after birth
 - Temporal portion of the facial nerve canal is completed
In patients with congenital anomalies

- Jahrsdoerfer: in a series of 66 aural malformation
 - 20% had facial nerve anomalies, of those 2/3 had stapes deformaties
- Hideki et al.
 - Mandibulofacial dysostosis (MFD)
 - AD malformation syndrome
 - Mandibular hypoplasia, cleft palate, and microtia…
 - Patients with MFD
 - Mastoid segment of the facial nerve was 2 mm more laterally and
 3 mm more anteriorly
 - The angle between the IAC and the labyrinthine segment of the
 facial nerve was more obtuse
 - The geniculate fossa was located more posterolaterally
 - The displacement was not significantly different among the 3
 groups of microtia
 - The mastoid segment of the facial nerve was displaced more anteriorly
 depending on the severity of microtia in the patients without MFD
 - 3 mm more anteriorly in patients with Gr. II and III microtia than
 in those with Gr. I microtia

- Canalicular segment anomaly of the facial canal
 - May enter the petrous pyramid
 - May run through the center of the superior semicircular canal,
 bypassing the middle ear cavity
 - Bifurcation within the IAC

- Labyrinthine segment anomaly of the facial canal
 - Bifurcation of the facial nerve
 - Anteromedial displacement
- Association with non-Mondini-type cochlear malformation

- **Tympanic segment anomaly of the facial canal**
 - Facial nerve coursing along the superior aspect of the lateral semicircular canal
 - House had seen this type in two instances

- Bifurcation of the facial nerve anterior or proximal to the oval window
 - Associated with developmental anomalies of the vestibular fenestra and stapes

- Facial nerve coursing horizontally over the oval window

- Facial nerve coursing through the stapedial arch
 - Butler and Marquet
- Facial nerve coursing posteriorly between the oval and round window
 - Fowler
 - Congenital fixation of the footplate and a persistent stapedial artery
 - Martin
 - Bilateral congenital fixation of the footplate and ossification of the stapedial tendon
 - Mayer and Crabtree: 12 patients were reviewed
 - All had congenital conductive hearing loss and facial canal was dehiscent in tympanic segment
 - Exposed nerve appeared normal in 9 patients and appeared as a “boggy mass” in 3 patients

- Facial nerve coursing posteriorly inferior to the round window

- Facial nerve coursing from the geniculate ganglion straight downward over the promontory
 - Reported by Dickinson and colleagues
Hypoplasia of the facial nerve
- Kodama and colleagues
 - Born with a deformed auricle and facial nerve paralysis

Welling et al.: 3 degrees of FN exposure in the middle ear
- 1st degree: severe bony dehiscence of the fallopian canal
- 2nd degree: the nerve overlying the oval window
- 3rd degree: the nerve runs over the promontary

Rohrt et al.: classified FN displacement in the middle ear into 4 groups
- I: FN partially obliterates the stapes footplate
- II: bifurcation of the FN
- III: FN rests on the footplate with deformed stapes or OW
- IV: FN rests on the promontory

A persisting stapedial artery
- From ICA → floor of the hypotympanum → promontory → stapedial arch → enter facial canal
- Supply outer surface of the dura

Mastoid segment of the facial canal
- Facial nerve following an abnormal posterior, lateral, or anterior course
 - The most likely one to have been cut
 - Fowler and Angell-James
 - Posterior and lateral bulge (dorsal hump) of the canal just beneath the prominence of the lateral semicircular canal
 - The most frequent anomaly
 - Fowler and Kettel
 - abnormal posterior position of the mastoid segment with the nerve overlying the sigmoid sinus
 - Glasscock
 - S-shaped anomaly with abnormal large chorda tympani nerve joined the facial nerve at the level of the pyramidal process
- Bifurcation and trifurcation of the facial nerve posterior or distal to the oval window
 - The lateral branch of the two trunks usually is the larger and the one that receives the chorda tympani nerve
 - Basek
 - Bifurcations found in 3 of 500 normal temporal bones removed at autopsy (0.6 %)
 - left the temporal bone through two separate foramina
 - A trifurcation of the facial nerve was reported by Botmann and Jongkees and by Heermann

- Hypoplasia of the facial nerve
 - Hawley, Tobeck and Miehlke
 - The main trunk of the facial nerve to end in a blind pocket of the mastoid process with a very small branch continued the normal course of the nerve
Conclusions

- Anomalous FN segment in the middle ear may limit or preclude surgical access for stapedectomy
- Never avulse the stapedial muscle or tendon but rather cut it — it may be firmly attached to the facial nerve
- Surgeons may misdiagnosed the swollen anomalous facial nerve as a tumor, resulting in facial nerve paralysis due to injury or unnecessary biopsy
- A bifurcated facial nerve can easily be cut accidentally — the two parts are usually unequal and the smaller overlooked
- Beware of any soft tubular structure in the middle ear regardless of its location
- Anomalous FN segment through the mastoid bone may be at risk with mastoidectomy or cochlear implant placement
References

1. Ahmed J, Chatrath P, Harcourt J. A bifid intra-tympanic facial nerve in

2. Takegoshi H, Kaga K, Chihara Y. Facial canal anatomy in patients with
mandibulofacial dysostosis: comparison with respect to the severities of

3. Al-Mazrou KA, Alorainy IA, Al-Dousary SH, Richardson MA. Facial nerve
Otorhinolaryngol. 2003 Dec;67(12):1347-53.

4. Glastonbury CM, Fischbein NJ, Harnsberger HR, Dillon WP, Kertesz TR.
Congenital bifurcation of the intratemporal facial nerve. AJNR Am J
2003 Sep;24(8):1730.

5. Romo LV, Curtin HD. Anomalous facial nerve canal with cochlear
malformations.

6. Takahashi H, Kawanishi M, Maetani T. Abnormal branching of facial nerve

8. Fowler EP. Variations in the temporal bone course of the facial nerve.
Laryngoscope 1961;71:937–944

nerve and congenital stapes fixation: an intraoperative and radiographic

10. E.P. Fowler, Variations in the temporal bone course of the facial nerve,
Laryngoscope 71 (1961) 937—946.

11. D.B. Welling, M.E. Glasscock, B.J. Gantz, Avulsion of the anomalous facial
nerve at stapedectomy, Laryngoscope 102 (1992) 729—733.

12. T. Rohrt, P. Lorentzen, Facial nerve displacement within the middle ear
(report of 3 cases), Laryngol. Otol. 90(1976) 1093—1098.