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Deep learning algorithms for detection of critical findings in 
head CT scans: a retrospective study
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Pooja Rao, Prashant Warier

Summary
Background Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or 
stroke symptoms. We aimed to develop and validate a set of deep learning algorithms for automated detection of the 
following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular, 
subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect.

Methods We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports 
from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset 
(Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation 
dataset (CQ500 dataset) was collected in two batches from centres that were different from those used for the 
development and Qure25k datasets. We excluded postoperative scans and scans of patients younger than 7 years. The 
original clinical radiology report and consensus of three independent radiologists were considered as gold standard 
for the Qure25k and CQ500 datasets, respectively. Areas under the receiver operating characteristic curves (AUCs) 
were primarily used to assess the algorithms.

Findings The Qure25k dataset contained 21 095 scans (mean age 43 years; 9030 [43%] female patients), and the CQ500 
dataset consisted of 214 scans in the first batch (mean age 43 years; 94 [44%] female patients) and 277 scans in the 
second batch (mean age 52 years; 84 [30%] female patients). On the Qure25k dataset, the algorithms achieved an AUC 
of 0·92 (95% CI 0·91–0·93) for detecting intracranial haemorrhage (0·90 [0·89–0·91] for intraparenchymal, 0·96 
[0·94–0·97] for intraventricular, 0·92 [0·90–0·93] for subdural, 0·93 [0·91–0·95] for extradural, and 0·90 [0·89–0·92] 
for subarachnoid). On the CQ500 dataset, AUC was 0·94 (0·92–0·97) for intracranial haemorrhage (0·95 [0·93–0·98], 
0·93 [0·87–1·00], 0·95 [0·91–0·99], 0·97 [0·91–1·00], and 0·96 [0·92–0·99], respectively). AUCs on the Qure25k 
dataset were 0·92 (0·91–0·94) for calvarial fractures, 0·93 (0·91–0·94) for midline shift, and 0·86 (0·85–0·87) for mass 
effect, while AUCs on the CQ500 dataset were 0·96 (0·92–1·00), 0·97 (0·94–1·00), and 0·92 (0·89–0·95), respectively. 

Interpretation Our results show that deep learning algorithms can accurately identify head CT scan abnormalities 
requiring urgent attention, opening up the possibility to use these algorithms to automate the triage process.
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Introduction
Non-contrast head CT scans are among the most 
commonly used emergency room diagnostic tools for 
patients with head injury or for those with symptoms 
suggesting a stroke or rise in intracranial pressure. The 
wide availability and low acquisition time of these 
scans make them a commonly used first-line diagnostic 
method.1 The percentage of annual US emergency room 
visits that involve a CT scan has been increasing for the 
past few decades2 and the use of head CT to exclude the 
need for neurosurgical intervention is on the rise.3

The most critical, time-sensitive abnormalities that 
can be readily detected on CT scan include intracranial 
haemorrhages, raised intracranial pressure, and cranial 
fractures. A key assessment goal in patients with stroke 
is exclusion of an intracranial haemorrhage, which 
depends on CT imaging and its swift interpretation.4 
Similarly, immediate CT scan interpretation is crucial 

in patients with a suspected acute intracranial 
haemorrhage to assess the need for neurosurgical 
treatment. Cranial fractures, if open or depressed, will 
usually require urgent neurosurgical intervention. 
Cranial fractures are also the most commonly missed 
major abnormality on head CT scans,5 especially if 
coursing in an axial plane.

Although these abnormalities are found on only a small 
proportion of CT scans, streamlining the head CT scan 
interpretation workflow by automating the initial triage 
process has the potential to substantially decrease time to 
diagnosis and expedite treatment, which might in turn 
decrease morbidity and mortality consequent to stroke and 
head injury. An automated head CT scan triage system 
might also be valuable for queue management in a busy 
trauma care setting, or could facilitate decision making in 
remote locations without availability of an immediate 
radiologist.
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The past year has seen several advances in application 
of deep learning6–9 for medical imaging interpretation 
tasks, with robust evidence that deep learning can 
perform specific medical imaging tasks including 
identifying and grading diabetic retinopathy10 and 
classifying skin lesions as benign or malignant11 with 
accuracy equivalent to specialist physicians. Deep 
learning algorithms have also been trained to detect 
abnormalities on radiological images such as chest 
radiographs,6,7 chest CT,12,13 and head CT8,9 through 
classification algorithms, as well as to localise and 
quantify disease patterns or anatomical volumes14–16 
through segmentation algorithms.

The development of an accurate deep learning 
algorithm for radiology requires—in addition to 
appropriate model architectures—a large number of 
accurately labelled scans that will be used to train the 
algorithm.17 The chances that the algorithm generalises 
well to new settings increase when the training dataset is 
large and includes scans from diverse sources.18

We describe the development and validation of fully 
automated deep learning algorithms that are trained to 
detect abnormalities requiring urgent attention on 
non-contrast head CT scans. The trained algo
rithms detect five types of intracranial haemorrhage 
(namely, intraparenchymal, intraventricular, subdural, 
extradural, and subarachnoid) and calvarial (cranial 
vault) fractures. The algorithms also detect mass effect 
and midline shift, both used as indicators of severity of 
the brain injury.

Methods
Datasets
We retrospectively collected 313 318 anonymous head 
CT scans from around 20 centres in India between 
Jan 1, 2011, and June 1, 2017. These centres, which 
included both in-hospital and outpatient radiology 

centres, use a range of CT scanner models (listed in 
the appendix, p 4) with slices per rotation ranging 
from 2 to 128. Each of the scans had an electronic 
clinical report associated with it, which we used as the 
gold standard during the algorithm development process. 

Of the 313 318 scans, we selected scans of 
23 263 randomly chosen patients (Qure25k dataset) for 
validation and used the scans of the remaining patients 
(development dataset) to train and develop the 
algorithms. We removed postoperative scans and scans 
of patients younger than 7 years from the Qure25k 
dataset. This dataset was not used during the algorithm 
development process.

An additional validation dataset (CQ500 dataset) was 
provided by the Centre for Advanced Research in 
Imaging, Neurosciences and Genomics, New Delhi, 
India. This dataset was a subset of head CT scans taken 
at six radiology centres in New Delhi between Jan 1, 2012, 
and Feb 1, 2018. Half the centres are stand-alone 
outpatient centres and the other half are radiology 
departments embedded in large hospitals. There was no 
overlap between these centres and those used to obtain 
the development dataset or Qure25k dataset. CT scanners 
used at these centres had slices per rotation varying from 
16 to 128 (see appendix p 4 for list of models). Data were 
pulled from local picture archiving and communication 
system (PACS) servers and anonymised in compliance 
with internally defined Health Insurance Portability and 
Accountability Act (HIPAA) guidelines. Because both 
datasets were retrospectively obtained and fully 
anonymised, the study was exempt from institutional 
review board approval.

Similar to the development and Qure25k datasets, 
clinical radiology reports associated with scans in the 
CQ500 dataset were available. Although we did not use 
them as gold standards in this study, we used them for 
the dataset selection.

Research in context

Evidence before this study
We searched for machine learning or deep learning studies 
focusing on computer-aided diagnosis of head CT. We searched 
Google Scholar for articles published before Feb 15, 2018, with 
the terms “deep learning” OR “machine learning” AND “head CT” 
AND “hemorrhage” OR “midline shift” OR “skull fracture”. We also 
reviewed reference lists of eligible texts. We identified several 
studies on the development and validation of computer-aided 
diagnosis algorithms that used small numbers of head CT scans. 
Deep learning has previously been used to detect intracranial 
haemorrhages. Traditional computer vision techniques were 
more common for detection of fractures and midline shift. In 
most studies, training and validation datasets had fewer than 
200 head CT scans, raising concerns about the robustness of these 
algorithms. We identified no standard public head CT datasets to 
allow direct comparison with our algorithms’ performance.

Added value of this study
We developed deep learning algorithms to separately detect as 
many as nine critical findings on head CT scans. We described 
the use of deep learning for detection of calvarial fractures and 
midline shift. We validated all the algorithms with a large 
dataset versus clinical radiology reports. We also validated the 
algorithms versus consensus of three radiologists using a 
dataset acquired from a completely different source than that 
of the development dataset.

Implications of all the available evidence
The strong performance of our deep learning algorithms suggests 
that they can potentially be used for triaging or notification of 
patients with critical findings as soon as a head CT scan is 
acquired. A clinical trial is required to determine if such triage or 
notification improves radiologist efficiency and patient care.

See Online for appendix
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We collected the CQ500 dataset in two batches. The 
first batch was collected by selecting all head CT scans 
taken at the centres for 30 days starting from Nov 20, 2017. 
The second batch was selected from the remaining scans. 
First, a natural language processing (NLP) algorithm 
was used to detect intraparenchymal, intraventricular, 
subdural, extradural, and subarachnoid haemorrhages, 
and calvarial fractures from clinical radiology reports. 
Second, reports were randomly selected so that there 
were around 80 scans with each of intraparenchymal, 
subdural, extradural, and subarachnoid haemorrhages, 
and calvarial fractures. Each of the selected scans were 
then screened for the following exclusion criteria: 
postoperative defect; absence of non-contrast (plain) axial 
series covering complete brain; and patient was younger 
than 7 years (estimated from cranial sutures19 if data were 
unavailable).

Follow-up scans for a patient were not excluded in the 
selection process. We removed any duplicate scans found 
in the dataset.

Reading the scans
Three senior radiologists (including NGC) served as 
independent raters for the CT scans in the CQ500 
dataset. They had corresponding experience of 8, 12, and 
20 years in cranial CT interpretation. None of the three 
raters was involved in the clinical care or assessment of 
the enrolled patients, nor did they have access to clinical 
history of any of the patients. Each of the radiologists 
independently evaluated the scans in the CQ500 dataset 
with the instructions for recording the findings and 
query resolution as shown in the appendix (pp 10–12). 
The order of presentation of the scans was randomised 
so as to minimise recall of the patients’ follow-up scans.

Each of the raters recorded the following findings for 
each scan: (1) the presence or absence of an intracranial 
haemorrhage and if present, its types (intraparenchymal, 
intraventricular, extradural, subdural, and subarachnoid); 
(2) the presence or absence of midline shift and mass 
effect; (3) the presence or absence of fractures, and if 
present, if the fracture was (partly) a calvarial fracture.

313 318 total scans

A  Development and Qure25k datasets

290 055 scans for 
 development 
 dataset

23 263 scans for 
 Qure25k 
 dataset

22 386 available scans

877 postoperative patients

21 095 available scans

1291 patients aged <7 years

4462 total reports

B  CQ500 dataset

285 potentially eligible reports for
 scans dated Nov 20–Dec 20, 
 2017

4177 potentially eligible for all 
 other scans 

440 reports selected through NLP

327 available scans 

113 scans not available

285 available scans

263 available scans 

22 postoperative patients 

282 available scans 

45 postoperative patients

235 available scans 

28 non-contrast axial series not found

278 available scans 

4 non-contrast axial series not found

277 available scans for CQ500
 second batch

1 patient aged <7 years

214 available scans for CQ500 
 first batch 

21 patients aged <7 years

Figure 1: Dataset selection process
NLP=natural language processing.
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Intra-axial presence of blood from any cause (such as 
haemorrhagic contusion, or tumour or infarct with 
haemorrhagic component) was included in the definition 
of intraparenchymal haemorrhage. Chronic haemor
rhages were considered positive in this study. Mass 
effect was defined as any of the following: local 
mass effect, ventricular effacement, midline shift, or 
herniation. Midline shift was considered positive if the 
amount of shift was greater than 5 mm. If there was at 
least one fracture that extended into the skullcap, the 
scan was considered to have a calvarial fracture.

If unanimous agreement for each of the findings 
was not achieved by the three raters, the interpretation of 
the majority of the raters was used as the final diagnosis.

For the development and Qure25k datasets, we 
considered clinical reports written by radiologists as the 
gold standard. However, these were written in free text 
rather than in a structured format. Therefore, a rule-
based NLP algorithm was applied on the radiologists’ 
clinical reports to automatically infer the target findings. 
We validated this algorithm on a random subset of 
reports from the Qure25k dataset to ensure that the 
inferred information was accurate and could be used as 
gold standard. The validation was achieved by manually 
labelling reports from this subset and comparing these 
labels to the NLP algorithm’s outputs.

Assessment of the algorithms
We describe the development of the deep learning 
algorithms in the appendix (pp 1–3). When run on a 
scan, our algorithms produce a list of nine real valued 
confidence scores in the range of 0–1 indicating the 
presence of the following nine findings: intracranial 
haemorrhage and each of the five types of haemorrhage, 
midline shift, mass effect, and calvarial fracture. As 
previously mentioned, the corresponding gold standards 
were obtained using majority voting for the CQ500 
dataset and by NLP algorithm of reports for the Qure25k 
dataset. Algorithms were assessed independently for 
each finding.

For both CQ500 and Qure25k datasets, receiver 
operating characteristic (ROC) curves20 were obtained 
for each of the target findings by varying the threshold 
and plotting the true positive rate (ie, sensitivity) and 
false positive rate (ie, 1–specificity) at each threshold. 
Two operating points were chosen on the ROC curve so 
that sensitivity was approximately 0·9 (high sensitivity 
point) and specificity approximately 0·9 (high specificity 
point; see appendix p 5 for algorithm for operating point 
choice). Areas under the ROC curves (AUCs) and 
sensitivities and specificities at these two operating 
points were used to assess the algorithms.

Statistical analysis
Sample sizes for proportions and AUCs were calculated 
using normal approximation and the method outlined by 
Hanley and McNeil,20 respectively. The prevalence of our 

target abnormalities in a randomly selected sample of 
CT scans tends to be low; therefore, establishing the 
algorithms’ sensitivity with a reasonably high confidence 
on an unenriched dataset would require very large 
sample sizes. For example, to establish a sensitivity with 
an expected value of 0·7 within a 95% CI of half-length 
of 0·10, the number of positive scans to be read is 
approximately 80. Similarly, for a finding with a 
prevalence of 1%, to establish an AUC within a 95% CI of 
half-length of 0·05, the number of scans to be read is 
approximately 20 000.

The Qure25k dataset used in our study was randomly 
sampled from the population distribution and had more 
than 20 000 scans in accordance with these sample size 
calculations. However, constraints on the radiologist 
time necessitated the previously mentioned enrichment 
strategy for the CQ500 dataset. Manual curation of scans 

Qure25k dataset CQ500 dataset: 
first batch

CQ500 dataset: 
second batch

Number of scans 21 095 214 277

Number of raters per scan 1 3 3

Number of scans for which age 
was known

21 095 189 251

Mean age, years (SD; range) 43 (22; 7–99) 43 (22; 7–95) 52 (20; 10–95)

Female patients 9030 (43%)* 94 (44%) 84 (30%)

Intracranial haemorrhage 2494 (12%) 35 (16%) 170 (61%)

Intraparenchymal 2013 (10%) 29 (14%) 105 (38%)

Intraventricular 436 (2%) 7 (3%) 21 (8%)

Subdural 554 (3%) 9 (4%) 44 (16%)

Extradural 290 (1%) 2 (1%) 11 (4%)

Subarachnoid 611 (3%) 9 (4%) 51 (18%)

Fracture 1653 (8%) 8 (4%) 31 (11%)

Calvarial fracture 992 (5%) 6 (3%) 28 (10%)

Midline shift 666 (3%) 18 (8%) 47 (17%)

Mass effect 1517 (7%) 28 (13%) 99 (36%)

Data are n (%), unless otherwise stated. *Sex was known for 21 064 scans in the Qure25k dataset.

Table 1: Dataset characteristics

Number of 
positives

Sensitivity (95% CI) Specificity (95% CI)

Intracranial haemorrhage 207 0·9807 (0·9513–0·9947) 0·9873 (0·9804–0·9922)

Intraparenchymal 157 0·9809 (0·9452–0·9960) 0·9883 (0·9818–0·9929)

Intraventricular 44 1·0000 (0·9196–1·0000) 1·0000 (0·9979–1·0000)

Subdural 44 0·9318 (0·8134–0·9857) 0·9965 (0·9925–0·9987)

Extradural 27 1·0000 (0·8723–1·0000) 0·9983 (0·9950–0·9996)

Subarachnoid 51 1·0000 (0·9302–1·0000) 0·9971 (0·9933–0·9991)

Fracture 143 1·0000 (0·9745–1·0000) 1·0000 (0·9977–1·0000)

Calvarial fracture 89 0·9888 (0·9390–0·9997) 0·9947 (0·9899–0·9976)

Midline shift 54 0·9815 (0·9011–0·9995) 1·0000 (0·9979–1·0000)

Mass effect 132 0·9773 (0·9350–0·9953) 0·9933 (0·9881–0·9967)

Performance of the natural language processing algorithm in inferring findings from radiologists’ reports, measured 
on 1779 reports from the Qure25k dataset. 

Table 2: Reliability of the gold standards for the Qure25k dataset
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(by referring to the scans themselves) would have had 
selection bias towards more visually significant positive 
scans. We mitigated this issue by random selection, in 
which positive scans were determined from the clinical 
reports. 

We generated confusion matrices for each of the nine 
critical CT findings at the selected operating points. 
We then calculated 95% CIs for sensitivity and specificity 
from these matrices using the exact Clopper-Pearson 
method21 based on β distribution. 95% CIs of AUCs were 
calculated following the distribution-based approach 
described by Hanley and McNeil.20 On the CQ500 dataset, 
we measured the concordance between paired raters on 
each finding using percentage of agreement and Cohen’s 
κ statistic.22 We also measured concordance between all 
three raters on each finding using Fleiss’ κ statistic.23 We 
did all statistical analyses using scipy, scikit-learn, and 
statsmodels python packages. 

We have also attempted to compare the performance of 
the algorithms to that of the radiologists. This was only 
possible on the CQ500 dataset because each rater could 
be compared with their consensus to obtain their 
performance metrics (see appendix pp 8–9 for details). 

Role of the funding source
The funder of the study was involved in data collection, 
data interpretation, writing of the report, and the decision 
to submit for publication. SC, RG, ST, PR, and PW had 
access to all the data in the study, while NGC, VKV, and 
VM had access to the CQ500 dataset only. SC, RG, 
and ST were responsible for the decision to submit for 
publication.

Results
In the Qure25k dataset, of the 23 263 head CT scans 
randomly chosen for validation, 21 095 were eligible for 
inclusion (figure 1). 4462 clinical reports were analysed in 
the selection process of the CQ500 dataset. Of these, 
285 were selected in the first batch and 440 in the second 
batch. 71 scans in the first batch and 163 scans in 

the second batch were excluded, resulting in a total of 
491 scans. Reasons for exclusion were non-availability of 
images (n=113), postoperative scans (n=67), scan had no 
non-contrast axial series (n=32), and patient younger than 
7 years (n=22).

Patient demographics and prevalences for each critical 
finding on head CT scan are summarised in table 1. 
In the Qure25k dataset, 2494 scans were reported positive 
for intracranial haemorrhage and 992 were positive for 
calvarial fracture. The first batch of the CQ500 dataset 
contained 35 scans reported positive for intracranial 
haemorrhage and six positive for calvarial fracture. In the 
second batch, 170 scans were reported positive for 
intracranial haemorrhage and 28 scans were positive for 
calvarial fracture.

The NLP algorithm used to infer the target CT 
findings from clinical reports in the Qure25k dataset 
was evaluated on a total of 1779 reports. Sensitivity and 
specificity of the NLP algorithm were fairly high; the 
least performing finding was subdural haemorrhage 
with a sensitivity of 0·93 (95% CI 0·81–0·99) and 
specificity of 1·00 (0·99–1·00), whereas fracture was 
inferred perfectly with sensitivity of 1·00 (0·97–1·00) 
and specificity of 1·00 (1·00–1·00; table 2).

Concordance between the three raters on the CQ500 
dataset was highest for intracranial haemorrhage 
(Fleiss’ κ=0·78) and intraparenchymal haemorrhage 
(Fleiss’ κ=0·77), representing excellent agreement for 
these findings (table 3). Calvarial fracture and subdural 
haemorrhage had the lowest concordance with Fleiss’ 
κ=0·45 and κ=0·54, respectively, indicating fair to 
moderate agreement. 

Table 4 and figure 2 summarise the performance of 
the deep learning algorithms. On the Qure25k set, the 
algorithms achieved AUCs of 0·92 (95% CI 0·91–0·93) 
for intracranial haemorrhage, 0·92 (0·91–0·94) for 
calvarial fracture, and 0·93 (0·91–0·94) for midline shift. 
The algorithms generally performed better on the 
CQ500 dataset than on the Qure25k dataset. On the 
CQ500 dataset, AUCs were 0·94 (95% CI 0·92–0·97) for 

Raters 1 and 2 Raters 2 and 3 Raters 1 and 3 All Fleiss’ κ

Agreement, n (%) Cohen’s κ Agreement, n (%) Cohen’s κ Agreement, n (%) Cohen’s κ

Intracranial haemorrhage 437 (89%) 0·78 446 (91%) 0·81 434 (88%) 0·76 0·78

Intraparenchymal 448 (91%) 0·79 445 (91%) 0·77 446 (91%) 0·77 0·77

Intraventricular 472 (96%) 0·70 477 (97%) 0·74 470 (96%) 0·66 0·70

Subdural 432 (88%) 0·49 457 (93%) 0·60 442 (90%) 0·56 0·54

Extradural 478 (97%) 0·51 483 (98%) 0·73 482 (98%) 0·60 0·61

Subarachnoid 457 (93%) 0·68 446 (91%) 0·61 446 (91%) 0·64 0·64

Calvarial fracture 451 (92%) 0·58 452 (92%) 0·37 448 (91%) 0·36 0·45

Midline shift 433 (88%) 0·58 428 (87%) 0·53 460 (94%) 0·70 0·60

Mass effect 424 (86%) 0·65 432 (88%) 0·67 427 (87%) 0·68 0·67

Three radiologists reviewed each of the 491 cases in the CQ500 dataset and majority vote of the raters was used as gold standard. The guidelines of Fleiss and colleagues24 
characterise κ values of more than 0·75 as excellent agreement, 0·40−0·75 as fair to good agreement, and less than 0·40 as poor agreement beyond chance.

Table 3: Reliability of the gold standards for the CQ500 dataset
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intracranial haemorrhage, 0·96 (0·92–1·00) for calvarial 
fracture, and 0·97 (0·94–1·00) for midline shift.

In a comparison of the performance of the algorithms 
to that of the radiologists on the CQ500 dataset, at high 
sensitivity operating point, sensitivities of algorithms 
and radiologists were not significantly different (p>0·05) 
but algorithms’ specificities were significantly lower 
(p<0·0001; appendix pp 8–9).

Discussion
To our knowledge, our study is the first to describe the 
development of a system that separately identifies critical 
abnormalities on head CT scans and to conduct 
a validation with a large number of scans sampled 
uniformly from the population distribution. We also 
report the algorithms’ accuracy versus a consensus of 
three radiologists on a second independent dataset, the 
CQ500 dataset. We have made this dataset and the 
corresponding reads available for public access so that 
they can be used to benchmark comparable algorithms in 
the future. Such publicly available datasets had earlier 
spurred comparison of the algorithms in other tasks such 
as lung nodule detection25 and chest radiograph diagnosis.6

Automated and semi-automated detection of findings 
from head CT scans have been studied by other groups. 

Grewal and colleagues9 developed a deep learning 
approach to automatically detect intracranial haemor
rhages. They reported a sensitivity of 0·8864 and a 
positive predictive value (precision) of 0·8124 on a 
dataset of 77 brain CT scans read by three radiologists. 
However, the types of intracranial haemorrhage 
considered were not mentioned in their report. 
Traditional computer vision techniques such as morpho
logical processing were used by Zaki and colleagues26 to 
detect fractures and by Yamada and colleagues27 to 
retrieve scans with fractures. Neither of the two studies 
measured accuracies on a clinical dataset. Automated 
midline shift detection was also explored28–30 using 
non-deep learning methods. Convolutional neural 
networks were used by Gao and colleagues8 to classify 
head CT scans to help diagnose Alzheimer’s disease. 
More recently, Prevedello and colleagues31 assessed 
the performance of a deep learning algorithm on a 
dataset of 50 scans to detect haemorrhage, mass effect, 
or hydrocephalus, and suspected acute infarct. The 
investigators reported AUCs of 0·91 for haemorrhage, 
mass effect, or hydrocephalus, and 0·81 for suspected 
acute infarct.

Our work is novel because it is the first large study in 
which the use of deep learning on head CT scans is used 

AUC (95% CI) High sensitivity operating point High specificity operating point

Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Qure25k dataset

Intracranial 
haemorrhage

0·9194 (0·9119–0·9269) 0·9006 (0·8882–0·9121) 0·7295 (0·7230–0·7358) 0·8349 (0·8197–0·8492) 0·9004 (0·8960–0·9047)

Intra
parenchymal

0·8977 (0·8884–0·9069) 0·9031 (0·8894–0·9157) 0·6046 (0·5976–0·6115) 0·7670 (0·7479–0·7853) 0·9046 (0·9003–0·9087)

Intraventricular 0·9559 (0·9424–0·9694) 0·9358 (0·9085–0·9569) 0·8343 (0·8291–0·8393) 0·9220 (0·8927–0·9454) 0·9267 (0·9231–0·9302)

Subdural 0·9161 (0·9001–0·9321) 0·9152 (0·8888–0·9370) 0·6542 (0·6476–0·6607) 0·7960 (0·7600–0·8288) 0·9041 (0·9000–0·9081)

Extradural 0·9288 (0·9083–0·9494) 0·9034 (0·8635–0·9349) 0·7936 (0·7880–0·7991) 0·8207 (0·7716–0·8631) 0·9068 (0·9027–0·9107)

Subarachnoid 0·9044 (0·8882–0·9205) 0·9100 (0·8844–0·9315) 0·6678 (0·6613–0·6742) 0·7758 (0·7406–0·8083) 0·9012 (0·8971–0·9053)

Calvarial fracture 0·9244 (0·9130–0·9359) 0·9002 (0·8798–0·9181) 0·7749 (0·7691–0·7807) 0·8115 (0·7857–0·8354) 0·9020 (0·8978–0·9061)

Midline shift 0·9276 (0·9139–0·9413) 0·9114 (0·8872–0·9319) 0·8373 (0·8322–0·8424) 0·8754 (0·8479–0·8995) 0·9006 (0·8964–0·9047)

Mass effect 0·8583 (0·8462–0·8703) 0·8622 (0·8439–0·8792) 0·6157 (0·6089–0·6226) 0·7086 (0·6851–0·7314) 0·9068 (0·9026–0·9108)

CQ500 dataset

Intracranial 
haemorrhage

0·9419 (0·9187–0·9651) 0·9463 (0·9060–0·9729) 0·7098 (0·6535–0·7617) 0·8195 (0·7599–0·8696) 0·9021 (0·8616–0·9340)

Intra
parenchymal

0·9544 (0·9293–0·9795) 0·9478 (0·8953–0·9787) 0·8123 (0·7679–0·8515) 0·8433 (0·7705–0·9003) 0·9076 (0·8726–0·9355)

Intraventricular 0·9310 (0·8654–0·9965) 0·9286 (0·7650–0·9912) 0·6652 (0·6202–0·7081) 0·8929 (0·7177–0·9773) 0·9028 (0·8721–0·9282)

Subdural 0·9521 (0·9117–0·9925) 0·9434 (0·8434–0·9882) 0·7215 (0·6769–0·7630) 0·8868 (0·7697–0·9573) 0·9041 (0·8726–0·9300)

Extradural 0·9731 (0·9113–1·0000) 0·9231 (0·6397–0·9981) 0·8828 (0·8506–0·9103) 0·8462 (0·5455–0·9808) 0·9477 (0·9238–0·9659)

Subarachnoid 0·9574 (0·9214–0·9934) 0·9167 (0·8161–0·9724) 0·8654 (0·8295–0·8962) 0·8667 (0·7541–0·9406) 0·9049 (0·8732–0·9309)

Calvarial fracture 0·9624 (0·9204–1·0000) 0·9487 (0·8268–0·9937) 0·8606 (0·8252–0·8912) 0·8718 (0·7257–0·9570) 0·9027 (0·8715–0·9284)

Midline shift 0·9697 (0·9403–0·9991) 0·9385 (0·8499–0·9830) 0·8944 (0·8612–0·9219) 0·9077 (0·8098–0·9654) 0·9108 (0·8796–0·9361)

Mass effect 0·9216 (0·8883–0·9548) 0·9055 (0·8408–0·9502) 0·7335 (0·6849–0·7782) 0·8189 (0·7408–0·8816) 0·9038 (0·8688–0·9321)

Neither of the datasets was used during the training process. AUCs are shown for nine critical CT findings in both these datasets. Two operating points were chosen on the 
ROC curve for high sensitivity and high specificity, respectively. Absolute number used for calculation of sensitivity and specificity are in the appendix (p 7). AUC=area under 
the receiver operating characteristic curve. ROC=receiver operating characteristic. 

Table 4: Performance of the algorithms on the Qure25k and CQ500 datasets

For more on the CQ500 dataset 
and corresponding reads see 
http://headctstudy.qure.ai/
dataset

http://headctstudy.qure.ai/dataset
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to detect and separately report accuracy for each critical 
finding, including the five types of intracranial 
haemorrhage. Furthermore, there is very little literature 
to date describing the accurate use of deep learning 
algorithms to detect cranial fractures. We demonstrate 
that deep learning algorithms are able to perform this 
task with high accuracy. The validation of algorithms that 
detect mass effect and midline shift (both used to 
estimate severity of a range of intracranial conditions 
and the need for urgent intervention) in such a large 
number of patients is also unique.

The algorithms produced fairly good results for all 
the target findings on both the Qure25k and CQ500 
datasets. AUCs for all the findings apart from mass 
effect were greater than or approximately equal to 0·9. 

AUCs on the CQ500 dataset were better than those 
on the Qure25k dataset. We hypothesise that this might 
be because of two reasons. First, because radiologists 
reading the Qure25k dataset had access to clinical 
history of the patients, their reads incorporated extra 
clinical information not available in the scans. The 
algorithms did not have access to this information and 
therefore did not perform well. Second, a majority 
vote of three raters is a better gold standard than that 
of one rater. Indeed, we observed that AUCs of the 
algorithms on the CQ500 dataset were lower when a 
single rater was considered the gold standard instead of 
the majority vote (appendix p 5).

We expect that the Qure25k dataset and the first batch 
of the CQ500 dataset represent the population distribution 
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Figure 2: ROC curves for the algorithms on Qure25k and CQ500 datasets
Individual raters’ true positive and false positive rates measured against their consensus on the CQ500 dataset are also plotted along with the ROCs for comparison. 
ROC=receiver operating characteristic.
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of head CT scans. This is because the Qure25k dataset 
was randomly sampled from a large database of head CT 
scans, whereas the first batch of the CQ500 dataset 
consisted of all the head CT scans acquired at the selected 
centres in a month. The observation that age, sex, and 
prevalence statistics are similar for both datasets further 
supports this hypothesis. The CQ500 dataset as a whole, 
however, is not representative of the population because 
the second batch was selected for higher incidence of 
haemorrhages. Despite this difference in prevalence, our 
performance metrics (ie, AUC, sensitivity, and specificity) 
should represent the performance on the population 
because these metrics are prevalence independent.

We did an informal qualitative analysis of the 
algorithms’ outputs on the CQ500 dataset. The algo
rithms produced good results for normal scans without 
bleed, scans with medium to large sized intraparenchymal 
and extra-axial haemorrhages, haemorrhages with frac
tures, and in predicting midline shift. There was room 
for improvement for small-sized intraparenchymal, 
intraventricular haemorrhages and haemorrhages close 
to the skull base. In this study, we did not separate 
chronic and acute haemorrhages. This approach resulted 
in occasional prediction of scans with infarcts and 
prominent cerebrospinal fluid spaces as intracranial 
haemorrhages. However, the false positive rates of the 
algorithms should not impede its usability as a triaging 
tool. We show some accurate and erroneous predictions 
of the algorithms in figure 3.

Our study has several limitations. Although the 
selection strategy ensured that there were a substantial 
number of positive scans in the CQ500 dataset for 
most of our target findings, the number of scans with 
extradural haemorrhage was found only to be 13. This 
result made the confidence intervals of sensitivities of 
extradural haemorrhage in this dataset wide. There is 
also a risk of selection bias in the CQ500 dataset, perhaps 
because ambiguously worded reports confounded the 
NLP algorithm and therefore were missed while selecting 
the second batch. However, this risk is minimal because 
of the high accuracy of the NLP algorithm when tested 
on the reports used to select this dataset (appendix p 5).

For the scans in the CQ500 dataset, concordance 
between the three radiologists was not very high for all 
findings. In particular, calvarial fracture had low Cohen’s 
κ of 0·58, 0·37, and 0·36 between the pairs of raters. 
This result might be because of non-availability of clinical 
history to the raters. We observed that the raters were 
either very sensitive or very specific to a particular target 
finding (appendix p 8). For example, two raters were 
highly sensitive to calvarial fracture whereas the third 
rater was highly specific.

Another limitation of our study is that we did not 
exclude follow-up scans of patients from the CQ500 
dataset, mainly because very few scans were reported 
with some of our target abnormalities such as extradural 
and intraventricular haemorrhages. We could not present 

the extent of this limitation because of non-availability of 
unique identifiers of patients in this dataset. Existence of 
follow-up images in the dataset might mean that the 
scans are not independent of each other, and therefore 
presented 95% CIs might be too tight.

In this study, we have limited our algorithm to the 
detection of calvarial (cranial vault) fractures. Another 
missing component is a thoroughly validated algorithm 
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Figure 3: Some accurate and erroneous predictions of the algorithms
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that localises lesions. Both of these are important for a 
clinical decision support system.

Our results show that deep learning algorithms can be 
trained to detect critical findings on head CT scans with 
good accuracy. The strong performance of deep learning 
algorithms suggests that they could be a helpful adjunct 
for identification of acute head CT findings in a trauma 
setting, providing a lower performance bound for quality 
and consistency of radiological interpretation. We think 
that it might also be feasible to automate the triage process 
of head CT scans with these algorithms. This approach 
might improve radiologist efficiency, but it is also possible 
that over-reliance on such a triage might lead to automation 
bias in radiologists whereby false negative scans are 
overlooked. A prospective clinical trial is necessary to 
determine the safety and efficacy of such a triage and if it 
ultimately improves patient care and outcomes.
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